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ABSTRACT: Stress development during drying is a criti-
cal factor that affects the final structure and properties of a
coated fiber or spherical product. Stress development during
drying of the coating is due to nonuniform shrinkage and
physical constraints. In this study, a large deformation
elasto-viscoplastic model is developed to predict stress de-
velopment in drying fibers and spheres after the coatings
solidify. From the model, stress evolution in the drying
fibers/spheres can be predicted by a partial differential
equation of diffusion in one dimension, a first-order partial

differential equation of pressure distribution, and two ordi-
nary differential equations on local evolution of the stress-
free state. The system of equations is solved by the Galer-
kin/finite element method in the one dimensional axial/
spherical symmetric coatings. Solutions show changes in
solvent concentration and viscous stress as the coating dries.
© 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3934–3944, 2003
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INTRODUCTION

Drying of coated fiber and spherical products has a
wide variety of applications. Fine ceramic fibers are
used in composites and high temperature resistant
textiles for insulation and gas filtering. These ceramic
fibers are usually made by spinning a solution that has
achieved the required viscosity. Glass optical fibers
are widely used to transmit optical signals over long
distances. Once these glass fibers are drawn from the
hot melt, contact of the fresh fiber with any solid
surface results in the immediate formation of micro-
flaws that reduce fiber strength; thus polymer coatings
must be applied as thin liquids that solidify by cooling
or curing. These protective polymer coatings preserve
the inherent strength of the glass and provide the fiber
with low micro-bending susceptibility. Similarly, dry-
ing of droplets (spheres) is a common practice in dairy
and painting industries.

In the above processes, the structure and properties
of the final product depend critically on the course of
drying, cooling, or curing. Inhomogeneous properties
can develop within the fiber/sphere. Defects that exist
in the final product are often attributed to polymer-
ization and crosslinking, phase transformation, and
stress evolution during coating. Stress development
within the fiber/sphere also limits the thickness of the
coating that can be applied. Once the coating has
solidified, the evaporation of solvent, further reaction,
further cooling, and so on may cause considerable

volume shrinkage. When the coating is constrained or
the shrinkage of the coating is not uniform, internal
strain develops, and this strain is accompanied by
stress.

Diffusion and mass transfer during drying of fibers
and spheres have been widely studied. Drying of fi-
bers and spheres has been examined by Charlesworth
et al.,1 Crank,2 Okazaki,3 Sano and Keey,4 Sano,5 and
Cairncross.6 Among them, Okazaki3 and Sano et al.4,5

employed a mass basis in formulating diffusion and
convective mass transfer; Cairncross et al.6 employed
a volume basis.

In this article, the Cairncross6 volume basis ap-
proach to drying fibers and spheres is extended to
explore the stress development mechanism after the
coating solidifies. An elasto-viscoplastic model is de-
veloped to predict stress development from frustrated
shrinkage and stress relaxation from the viscoplastic
change of the stress-free state. This model is devel-
oped for the drying of a cylindrical or spherical body
without any substrate (core). It can be readily ex-
tended to consider the drying of an annular or spher-
ical shell surrounding a substrate (core), such as the
drying of the polymer coating on an optical fiber.

THEORY

Drying and diffusion

For a binary solution consisting of a volatile solvent
and a nonvolatile polymer, the original polymer loca-
tion is identified by its coordinates X(R, �, Z), with Z
specifying the axial coordinate in fibers and the azi-
muthal angle in spheres (Fig. 1). After drying and
deformation, the same polymer is located by its new
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position x(r, �, z). In the case of uniform initial poly-
mer concentration and uniform drying rate across the
coating/air interface, the coating retains its cylindri-
cal/spherical shape, and all coating particles move
radially towards the axis/center. This makes the dry-
ing cylindrically/centrally symmetric and one dimen-
sional. In the case of ideal mixing, Amagat’s law holds
and the molar concentration of solvent (cs) is governed
by

�cs

�t �
1
r�

�

�r �r�D
�cs

�r � (1)

in which D is the binary diffusion coefficient and r is
the radius in the current spatial coordinate. Following
Cairncross6 notation, the exponent � is equal to 1 for
axially symmetric fibers, and 2 for centrally symmetric
spheres.

The boundary conditions to eq. (1) are the follow-
ing. At the center of the fiber/sphere, the solvent flux
is zero. At the free surface, the solvent flux relative to
the moving surface on the coating side is equal to that
on the air side. The latter is described by a mass
transfer coefficient multiplied by a concentration-dif-
ference driving force. Therefore

D
�cs

�r � 0 at r � 0, t � 0 (2)

D

1 � csVs

�cs

�r � �kg�Hcs � cg
�� at r � l�t�, t � 0 (3)

where Vs is the partial molar volume of solvent, cg
� is

the solvent concentration in the air far from the sur-
face, cs(l ) is the solvent concentration in the coating at
the surface and in equilibrium with that in the air at
the surface, and H is a solubility coefficient (Henry’s
coefficient) that depends on temperature. In addition,
since the free surface is permeable to the solvent but
not to the polymer, and the fiber/sphere is decreasing
in size, the polymer on the surface is swept inward.
The rate of change of the radius of this interface l(t) is
given by

dl�t�
dt � �Vskg�Hcs � cg

��. (4)

Kinematics

Fibers are usually long, with deformation in the axial
direction constrained, and therefore deformation is
subject to the plane–strain condition. In drying
spheres, however, the deformation is centrally sym-
metric. As in Figure 1, the solidification point, which is
stress free, is chosen as the original reference state.
When the deformation is cylindrically/centrally sym-
metric, the total deformation gradient is

Figure 1 Cylindrical/spherical coordinates in the drying fibers and spheres. The drying and deformation are under
axially/centrally symmetric conditions. The fiber is under plane–strain condition.
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F � �Xx � eRer

�r
�R � e�e�

r
R � eZez� r

R�
��1

, (5)

where (eR, e�, eZ) and (er, e�, ez) are respectively unit
base vectors in the original reference coordinate X(R,
�, Z) and the current spatial coordinate x(r, �, z). Due
to the symmetric condition,

er � eR, e� � e�, ez � eZ. (6)

Assuming the mechanical deformations (elastic and
viscoplastic if yielded) are incompressible, and the
volume change is solely due to drying and shrinkage,

det F � � r
R�

� �r
�R � �3, (7)

where � is the shrinkage factor that is related to the
current solvent concentration (cs) and the solvent con-
centration at solidification (c*s). When drying starts
from the solidification point, the initial solvent con-
centration, c*s � cs

0, and

� � �1 � cs
0V� s

1 � csV� s
� 1/3

. (8)

Eq. (7) gives the current position (r) of the coating
particle that was originally located at radius R. The
boundary condition for r is obvious since the center is
not moving; therefore r � 0 at R � 0.

In eq. (5), the total deformation gradient can be
factored into the isotropic volume shrinkage (�I), the
elastic deformation gradient (Fe), and the viscoplastic
deformation gradient (F	p). After rearrangement, the
elastic deformation tensor becomes

Fe �
1
�

F � F	p�1
�

�2

FR
	p �R

r�
�

eReR

�
1

�F�
	p

r
R e�e� �

1
�FZ

	p � r
R�

��1

eZeZ, (9)

in which FR
	p, F�

	p, FZ
	p are the only nonzero components

of the viscoplastic deformation gradient (F	p). The
elastic strain can be expressed as either the left or right
Cauchy-Green tensors; under axisymmetric/spherical
symmetric conditions, the two are the same:

Ce � Be � Fe � FeT
� BR

e eReR � B�
e e�e� � BZ

e eZeZ (10)

in which

BR
e �

�4

�FR
	p�2 �R

r �
2�

, B�
e �

1
��F�

	p�2 � r
R�

2

,

BZ
e �

1
��FZ

	p�2 � r
R�

2���1�

(11)

Any difference between the current stress-free state and
the current state causes the strain tensor to deviate from
the unity tensor; such deviation gives rise to stress.

The viscoplastic strain rate is the time derivative of
the viscoplastic deformation gradient in the current
stress-free state, with three nonzero components:

D� R
	p �

ḞR
	p

FR
	p BR

e , D� �
	p �

Ḟ�
	p

F�
	p B�

e , D� Z
	p �

ḞZ
	p

FZ
	p BZ

e (12)

Eq. (12) describes the viscoplastic relaxation rate of the
current stress-free state, which is usually related to the
post-yield viscosity and the excess stress level above
the yield stress.

Pressure distribution and constitutive relations

Similar to the drying planar coating described by Lei
and coworkers,7 the elastic stress is modeled with the
neo-Hookean equation, which for the drying of cylin-
drically/centrally symmetric forms gives the non-zero
components of Cauchy stress as


r � �� � GBR
e , 
� � �� � GB�

e , 
z � �� � GBZ
e

(13)

Here G is the coating shear modulus, and the compo-
nents of the Cauchy-Green strain tensor (BR

e , B�
e , BZ

e )
are given in eq. (11). The lower case subscripts (r, �, z)
in eq. (13) identify three components of the Cauchy
stress tensor in the current state. The hydrostatic pres-
sure-like parameter (�) is related to the negative mean
normal stress (p) simply by

� � p �
G
3 �BR

e � B�
e � BZ

e �. (14)

When inertia and gravity are negligible, the mechan-
ical equilibrium requires that

r
�
r

�r � ��
r � 
�� � 0. (15)

In drying axisymmetric fibers (� � 1) the stress along
the axis direction, 
z, provides the plane-strain con-
straint. For central symmetric spheres (� � 2), obvi-
ously 
z equals 
�. The substitution of 
r and 
� from
eq. (13) into eq. (15) gives the partial differential equa-
tion that governs the pressure-like parameter �:
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��

�r � G� 4
�

��

�r BR
e �

2��

r�FR
	p�2 �R

r �
��1

�
��BR

e � B�
e �

r �
2BR

e

FR
	p

�FR
	p

�r � (16)

To solve eq. (16) for �, a boundary condition is nec-
essary. At the interface between coating and drying air
(r � l(t)), the normal stress to the surface in the air side
and the coating side should be in equilibrium. In this
case the surface tension is negligibly small compared
to the non-zero components of the stress. This pro-
vides the boundary condition on �:

� � pa � GBR
e , at r � l�t� (17)

where pa is the pressure in the drying air. Since pa

serves only as a basis pressure, it is set to zero in the
following derivations.

As the drying continues and stress rises, the coating
may enter an elasto-viscoplastic regime. To describe
the viscoplastic flow after the coating yields, the
Cauchy stress is transformed from the current state to
the current stress-free state. Doing so gives the Second
Piola-Kirchhoff stress tensor, whose non-zero compo-
nents are

SR � �
��3

BR
e � G�3, S� � � �

��3

B�
e � G�3,

S� Z � �
��3

BZ
e � G�3 (18)

Yielding is predicted with von Mises’ criterion, which
is formulated in terms of the second invariant of the
current elastic stress. For von Mises’ criterion, only the
deviatoric part of Cauchy stress needs to be trans-
formed to the current stress-free state:

S� �R �
G�3

3 �2 �
B�

e

BR
e �

BZ
e

BR
e � , S� �� �

G�3

3 �2 �
BR

e

B�
e �

BZ
e

B�
e �

S� �Z �
G�3

3 �2 �
BR

e

BZ
e �

B�
e

BZ
e � (19)

in which all components are independent of pressure.
The second invariant of the above hypothetical stress-
state depends on its deviatoric part alone,

	 � �1
2 
�S� �RCR

e �2 � �S� ��C�
e �2 � �S� �ZCZ

e �2�

�
G�3

3�2 ��2BR
e � B�

e � BZ
e �2 � ��BR

e � 2B�
e

� BZ
e �2 � ��BR

e � B�
e � 2BZ

e �2 (20)

Von Mises’ yield criterion is

	 � k� � 0, not yielding
� 0, critical condition

 0, continuous yielding

where k is the critical shear stress at yielding and acts
to define the size of the (abstract) yield surface in the
space of principal stresses (the stress having been
transformed to the current stress-free state). When the
criterion is exceeded, the flow law of yielding is that
the rate of viscoplastic deformation is proportional to
the excess of the second invariant over the yield value,
and is in the direction, in the space of the principal
directions, of the gradient of the second invariant:

D� R
	p �

1
�

�	 � k�
�	

�S� R

�
�	 � k�

2�	
CR

e2S� �R (21)

D� �
	p �

1
�

�	 � k�
�	

�S� �

�
�	 � k�

2�	
C�

e2S� �� (22)

D� Z
	p �

1
�

�	 � k�
�	

�S� Z

�
�	 � k�

2�	
CZ

e2S� �Z (23)

where � is the post-yield viscosity of the stress-free
state. The notation � � denotes

�	 � k� � � 	 � k if 	 � k
0 otherwise

With rearrangement that makes use of eqs. (11, 12,
19–23), these strain rate equations simplify to three
ordinary differential equations that govern the devel-
opment of the current stress-free state:

ḞR
	p

FR
	p �

G�3

6
�	 � k�

�	
�2BR

e � B�
e � BZ

e � (24)

Ḟ�
	p

F�
	p �

G�3

6
�	 � k�

�	
�2B�

e � BR
e � BZ

e � (25)

ḞZ
	p

FZ
	p �

G�3

6
�	 � k�

�	
�2BZ

e � B�
e � BR

e � (26)

These three equations are not independent. Adding
them together gives:

� ln�FR
	pF�

	pFZ
	p�

�t � 0 (27)

After using the initial condition for the viscoplastic
deformation gradient (FR

	p � F�
	p � FZ

	p � 1 at t � 0), the
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product of these components is always a unity
throughout the drying process:

FR
	pF�

	pFZ
	p � 1 at all t � 0 (28)

This confirms the initial application of incompressible
viscoplastic deformation as in eq. (7). Hence three
unknowns (FR

	p, F�
	p, FZ

	p) are governed by the combi-
nation of eq. (28) with any two of the three ordinary
differential eqs. (24–26), the solution of which de-
scribes the development of the stress-free state. For
centrally symmetric spheres, FZ

	p � F�
	p, and eqs. (24–26

and 28) can be further simplified to an algebraic equa-
tion and an ordinary differential equation. Here they
are kept general as above to consider both fibers and
spheres. The coupling of these equations about the
stress-free state and the diffusion equation system
(1–4) are enough to describe the one-dimensional
stress development in the drying axially symmetric
fibers or centrally symmetric spheres.

Dimensionless simplification

For polymer–solvent systems, the diffusion coefficient,
shear modulus, viscosity, and yield stress are all func-

tions of solvent concentration. As a first approxima-
tion, constant material properties are used. The di-
mensionless variables and parameters used in the
computation are listed in Table I.

The resulting dimensionless equation system is

�c
�


�
1
�2

1
��

�

�� ���
�c
��� �

�

�

d�

d


�c
��

(29)

d�

d

� ��iBim�c � ceq� (30)

� � � 1 � �i

1 � �ic
� 1/3

(31)

��

��o
� �3��o

� ��

(32)

1
FR

	p

�FR
	p

�

�

NEl�
3

6
�	 � k�

	
�2BR

e � B�
e � BZ

e � (33)

1
F�

	p

�F�
	p

�

�

NEl�
3

6
�	 � k�

	
��BR

e � 2B�
e � BZ

e � (34)

FZ
	p �

1
FR

	pF�
	p (35)

��̂

��
�

4BR
e

�

��

��
�

2��

��FR
	p�2 ��o

� ���1

�
�BR

e � B�
e ��

�
�

2BR
e

FR
	p

�FR
	p

��
(36)

The boundary and initial conditions are

c��, 0� � 1, ��0� � 1 (37)

c��0, 
� � 0,
f

1 � �ic
c��1, 
� � ��Bim�c � ceq� (38)

FR
	p � F�

	p � FZ
	p � 1 before yielding (39)

Among the above equations, the diffusion eqs. (29, 30)
can be solved for solvent concentration independent

Figure 2 Concentration distribution along radius of fiber/
sphere after different intervals of drying.

TABLE I
Dimensionless Variables and Parameters Used

Dimensionless variables Dimensionless parameters

Solvent concentration c � cs/cs
0 Equilibrium concentration ceq � cg

�/(Hcs
o)

Time 
 � Dt/l0
2 Initial volume fraction �i � Vscs

o

Location � � r/l(t) Mass Biot number Bim � kgl0H/D
Surface position � � l(t)/l0 Initial polymer position �0 � R/lo
Pressure �̂ � �/G Elasticity number NEl � Glo

2/(�D)
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of the rest of the equation set, from which the concen-
tration distribution and free surface position are given.
Then the local volume shrinkage can be easily evalu-
ated through eq. (31). The integration of eq. (32) then
gives the current coating particle position (�) of the
same particle originally located at �o. Hence, the sol-
vent concentration distribution, the local volume
shrinkage, and the current coating particle position
are available before solving for stress, largely simpli-
fying the numerical calculations. The reason for this
simplification is that the stress does not accelerate or
hinder the diffusion, and elastic and viscoplastic de-
formations do not change the volume of the coating.
Once the amount of local volume shrinkage and the
current coating particle position are available, the two
ordinary eqs. (33, 34) and the algebraic eq. (35) can be
solved for the evolution of the stress-free state. Pres-

sure then can be determined by solving eq. (36). Fi-
nally the stress distributions are computed from sim-
ple substitutions.

A finite element program similar to that used by Lei
and coworkers7,8 was developed to solve for the dry-
ing and stress development in axisymmetric fibers and
centrally symmetric spheres.

RESULTS AND DISCUSSION

Elastic fibers/spheres

For an elastic fiber/sphere, a trivial solution will occur
in the limiting case when diffusion resistance within
the fiber/sphere is small compared to the mass trans-
fer resistance in the air, so that the concentration of

Figure 3 Radial stress distribution along radius of elastic
fiber after different intervals of drying.

Figure 4 Tangential (hoop) stress distribution along elastic
fiber after different intervals of drying.

Figure 5 Axial stress distribution along the radius of elastic
fiber after different intervals of drying. This stress keeps the
fiber in plane–strain condition.

Figure 6 Radial stress distribution along radius of elastic
sphere after different intervals of drying.
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solvent can be considered as invariable with the posi-
tion. In this limiting case, the shrinkage ratio does not
vary with radius. Solving the above boundary value
problem gives

� � �3/�1����o, �̂ � ��4�2��/�1��� (40)

Substituting these into eq. (13), one can find all stress
components. For fibers (� � 1), the only non-zero
component of the Cauchy stress tensor is


z � �G� �
G
�2 (41)

This comes from the constraints at the two ends of the
fiber, since the two ends have to be fixed in order to
keep the fiber under plane–strain condition. For
spheres (� � 2), all stress components are zero, which
is reasonable since the sphere has neither shrinkage
gradient nor frustration from any substrate.

When diffusion resistance within is comparable to
the mass transfer resistance in the air, the concentra-
tion of solvent is no longer uniform. Figure 2 shows
the concentration profiles in the fiber/sphere taken at
four different dimensionless times, 
 � 0.01, 
 � 0.08,

 � 0.2, 
 � 0.6. In the computation, the coating
initially consists of 20 vol % solvent and 80 vol %
polymer; the convective air is dried so that ceq � 0. The
mass Biot number is chosen as Bim � 5, so drying is
diffusion-dominated. At the beginning stage of drying
(e.g. 
 � 0.01), a large driving force causes rapid
solvent depletion near the surface, resulting in a steep
concentration gradient near the coating/air interface.
In the late stages of drying (e.g. 
 � 0.6), almost all
solvent is depleted and the concentration profile is flat
throughout the coating. By comparing the concentra-

tion profile of a sphere to that of a fiber, it is found that
drying a sphere is faster than drying a fiber with the
same radius and drying conditions. This is reasonable
because the sphere has a larger surface area per unit
volume as compared with that of the fiber.

As drying continues and the solvent concentration
gradient develops, the local volume shrinkage varies
along the radius. For fibers, this non-uniform shrink-
age is another source of stress, in addition to the
frustration at both ends. For spheres, this non-uniform
shrinkage is the only source of stress. Figures 3–7
show the stress distributions in the fiber and sphere at
six different times. Initially, at the start of drying, the
fiber/sphere is in the stress-free state, both radial and
hoop stresses being zero. As drying starts, the solvent
evaporates from the free surface and the material close
to the free surface shrinks more than the material near
the center of the fiber/sphere. As a result, the polymer
particles near the center are squeezed by the outer
particles, and simultaneously the outer particles are
extended by the inner ones. This interaction gives a
negative radial stress, 
r (Figs. 3 and 6), that reaches a
minimum at the center and trends to zero at the free
surface to be consistent with the non-traction bound-
ary condition there. The hoop stress (
�) (Figs. 4 and
7), however, is positive near the surface and negative
near the center, because the material near the surface
is under tension and the material near the center is
squeezed. The total hoop force, or the area integral of
hoop stress along the radius, should vanish in order to
maintain equilibrium in the fiber/sphere.

As drying continues, the radial stress becomes more
negative and the hoop stress deviates further from the
initial zero value. However, this process continues
only to a certain point. When more and more solvent
evaporates from the fiber/sphere and the amount of
residual solvent diminishes, the solvent concentration
and volume shrinkage become more uniform. There-
after, the stress distribution approaches the solution of
an elastic fiber/sphere under uniform shrinkage, in
which for a fiber the only non-zero stress is the axial
stress and for a sphere the stresses decrease back
towards zero.

For drying fibers, the distribution of axial stress (
z)
is shown in Figure 5. Stress results from the constraint
of the two fixed ends. Immediately after the drying
begins, the axial stress is positive near the free surface,
which suggests that the coating particles near the free
surface are under axial tension. In the center of the
fiber, however, the particles are under axial compres-
sion. After a certain drying time, the whole fiber is
under axial extension. The total forces that must be
applied to the ends of the fiber are the area integral of
axial stress over the end surfaces.

To more clearly present the changing of stresses
during the drying process, the stress evolution pro-
files at three coating particles in the fiber/sphere are

Figure 7 Tangential (hoop) stress distribution along radius
of elastic sphere after different intervals of drying.
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plotted in Figures 8 and 9. The first particle is lo-
cated at the center (�o � 0) of the fiber/sphere [Figs.
8 and 9(a)], the second one is originally located near
the mid point (�o � 0.51) between the center and
the free surface [Figs. 8 and 9(b)], and the third one
(�o � 0.9988) is originally located near the free
surface [Figs. 8 and 9(c)]. From the development of
stresses in fibers, the stresses are dominated by axial

stress, which is developed to keep the fiber in a
plane–strain condition. For the sphere, the center is
under isotropic compressive stress, and the free sur-
face is under aximuthal tension. They also show that
the stresses change rapidly near the free surface.
The stress evolution patterns are quite different at
different positions. For example, close to the free
surface, the hoop stress increases to a maximum,

Figure 8 Stress evolution for coating particles of elastic fiber originally located at: (a) center of the fiber; (b) �o � 0.51, near
midpoint between center and free surface; and (c) �o � 0.9988, near free surface of fiber.
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then decreases to zero. Close to the center, however,
it decreases to a minimum, and then increases to
zero.

Elasto-viscoplastic fibers/spheres

Elasto-viscoplastic behavior appears when the second
invariant of the local stress tensor in the fiber/sphere

exceeds the local yield stress. Figures 10–14 show the
stress distributions in a drying elasto-viscoplastic fi-
ber/sphere at different times. Parameters used in the
computation are Bim � 5, ceq � 0, �i � 0.2, NEl � 4, and
k � 0.02G. A simple comparison in stresses between an
elastic fiber/sphere (Figs. 3–7) and an elasto-visco-
plastic fiber/sphere (Figs. 10–14) shows that the final
stress distribution is uniform in an elastic fiber/

Figure 9 Stress evolution for the coating particles of elastic sphere originally located at: (a) the center of the sphere; (b) �o
� 0.51, near midpoint between center and free surface; and (c) �o � 0.9988, near free surface of sphere.
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sphere, but this is not the case in an elasto-viscoplastic
fiber/sphere. For an elasto-viscoplastic fiber/sphere,
the stress rises at the onset of drying due to the con-
straint from both ends of the fiber (no constraint for
the sphere) and the non-uniform shrinkage as solvent
evaporates. Once the stress exceeds the yield strength,
the local material yields. The viscoplastic deformation,
unlike the elastic deformation, is not reversible, and it
dissipates some mechanical energy. The stresses vary
with fiber/sphere radius, along with the amount of
yielding and unrecoverable deformation. At a later
stage of the drying, the shrinkage becomes more uni-
formly distributed due to the more uniform solvent
concentration. As shown in Figures 10–14, the stress
magnitude decreases and the material might go below
the yield surface again, and the fiber/sphere is then
subject to unloading. One major effect of stress un-

loading after yielding is the appearance of residual
stress.

To more clearly explain this, we will focus on the
development of hoop stress (Fig. 11 for a fiber and Fig.
14 for a sphere). At the very beginning of the drying,
the polymer particles near the free surface are under
hoop tensile stress due to the larger volume shrinkage
close to the free surface as compared to that near the
center of the fiber/sphere. At the same time, the poly-
mer particles close to the center of the fiber/sphere are
under compressive hoop stress. As more stress devel-
ops, the outer part of the coating yields, and then the
yielding front propagates inward. After yielding, the
decrease in hoop stress could be due to two factors.
Firstly, when the drying is close to the end, the solvent
concentration gradient and the volume shrinkage gra-

Figure 10 Radial stress distribution along radius of elasto-
viscoplastic fiber after different intervals of drying.

Figure 11 Tangential (hoop) stress distribution along
elasto-viscoplastic fiber after different intervals of drying.

Figure 12 Axial stress distribution along radius of elasto-
viscoplastic fiber after different intervals of drying. This
stress keeps fiber in plane–strain condition.

Figure 13 Radial stress distribution along radius of elasto-
viscoplastic sphere after different intervals of drying.
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dient become smaller, which give a lower stress. Sec-
ondly, when the second invariant of the stress tensor
goes above the yield stress, the viscoplastic flow
causes the stresses to relax. Since the viscoplastic de-
formation is not reversible, once the stresses at the
yielded polymer particles become lower than the yield
stress, unloading takes place. Different parts of the
fiber/sphere may yield to different extents; therefore
final residual stress will exist in the fiber/sphere. Note
that the residual hoop stress near the free surface is
compressive, while that near the center of the fiber/
sphere is tensile. This is opposite to the hoop stress
distribution at the beginning of the drying. This be-
havior of stress reversal is due to the interaction of the
stresses among the circular/spherical layers in the
drying fibers/spheres. This stress reversal behavior is
not seen during the drying of a planar coating, since in
it the equations governing the stresses are not inter-
acting among the layers.7

CONCLUSIONS

Stress development in a drying fiber/sphere coating is
due to non-uniform shrinkage as it dries and con-
straint from the surroundings. This study focuses on
the drying after the coating solidifies, in which the
coating is considered as an elasto-viscoplastic mate-
rial. A large deformation elasto-viscoplastic model
was developed to predict stress development in dry-
ing fibers and spheres.

Model predictions show that, during early stage of
drying, hoop stresses in the fiber and sphere are ten-
sile near the free surface and compressive near the
center. Close to the end of drying, however, stress
distributions will depend on coating materials. For
elastic materials, stresses (except the axial stress that
arises from the end constraints in elastic fiber coatings)
decrease to zero due to the eventual uniform shrink-
age. For elastoviscoplastic materials, residual stresses
are presented even after the coating is completely
dried. This is due to the varying levels of yielding at
different locations. After drying of the elasto-visco-
plastic materials, the model predicts a stress reversal
behavior, where the particles near the surface are un-
der compression and the particles near the center are
under tension, reversed of what was observed during
early stage of drying.
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Figure 14 Tangential (hoop) stress distribution along ra-
dius of elasto-viscoplastic sphere after different intervals of
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